阅读设置(推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

第六十七章数论(3 / 4)

虽然说本科是四年制,但是并不代表得呆满四年才能毕业。很多人早早学完本科专业,提前申请毕业。只要学完学分,又通过毕业答辩,就可以毕业。

秦元清一头扎入冰雹猜想,深入学习数论。冰雹猜想属于数论领域,数论不够深,是别想解开冰雹猜想。

数论是纯粹数学的分支之一,主要研究整数的性质,到了秦元清学习的高等数论大致包括代数数论、解析数论、计算数论等。

数论最大的发展是从15-16世纪到19世纪,这三百多年时间诞生了费马、梅森、欧拉、高斯、勒让德、黎曼、希尔伯特等大数学家,这些大数学家推动了数论的发展。

很多著名猜想,都是那时候诞生,遗留到20世纪乃至到21世纪,一部分甚至到了现在都还未能解决。比如黎曼猜想!

初等数论,主要就是研究整数环的整数理论及同余理论,经典的结论包括算术基本定理、欧几里得的质数无限证明、中国剩余定理、欧拉定理(其特例是费马小定理)、高斯的二次互反律,勾股方程的商高定理、佩尔方程的连分数求解法等等。

解析数论则是借助微积分及复分析(即复变函数)来研究关于整数的问题,主要又可以分为乘性数论与加性数论两类。乘性数论藉由研究积性生成函数的性质来探讨素数分布的问题,其中质数定理与狄利克雷定理为这个领域中最著名的古典成果。加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题。解析数论方法除了圆法、筛法等等之外,也包括和椭圆曲线相关的模形式理论等等。

代数数论,则是将整数环的数论性质研究扩展到了更一般的整环上,特别是代数数域。

当然还有几何数论、计算数论、组合数论、算术代数几何等,特别是算术代数几何更是数论发展到目前为止最深刻最前沿的领域,可谓集大成者。它从代数几何的观点出发,通过深刻的数学工具去研究数论的性质。

比如怀尔斯证明费马猜想就是算术代数几何的经典实例,整个证明几乎用到了当时所有最深刻的理论工具。

当代数论的一个重要的研究指导纲领,就是著名的朗兰兹纲领。凭借此贡献,罗伯特·朗兰兹成为名满世界的数学家,在1996年获得沃尔夫数学奖。

秦元清一头扎入数论的深领域中,几乎每天都泡在图书馆里,上课除了个别课程,也在看相关的数论书籍、工具。

过去数论许多猜想被证明,最重要的价值并不是猜想变成定理,而是在过程中运用到的工具和数学思维。

上一页 目录 +书签 下一页